• 《方解石(CaCO3)和菱镁矿(MgCO3)热分解-产物形成途径研究》
  • 作者:赵臻
  • 单位:辽宁科技大学
  • 论文名称 方解石(CaCO3)和菱镁矿(MgCO3)热分解-产物形成途径研究
    作者 赵臻
    学科
    学位授予单位 辽宁科技大学
    导师
    出版年份 0
    中文摘要 方解石(CaCO₃)和菱镁矿(MgCO₃)热分解是最广泛的固体反应研究内容之一,研究成果对了解所有固体热稳定性具有重要意义。虽然从化学反应关系式上看,方解石和菱镁矿的热分解反应只是简单的一步反应,但是就其固体热分解反应的本质而言,其反应过程是非常复杂的。仅从宏观实验很难获得反应过程中的化学键断裂、晶型转变、产物成核等机理,为此本文在宏观实验研究的基础上,重点采用量子化学计算方法,对两种矿物的热分解反应路径、反应过程中的晶型变化,固体产物的形核机理进行了理论研究和分析。主要研究内容和结果如下: (1)采用热重(TG)-差示扫描量热(DSC)两种热分析联用技术,在不同升温速率下(5 K/min-15 K/min),测定4㎎方解石粉末的热分解过程。实验结果发现,不同升温速率下,方解石分解反应的TG实验曲线和DSC实验曲线获得的动力学信息存在明显差异,表明方解石热分解过程中存在晶型转变。 (2)应用Gaussian03量子化学软件包,在MP2(full)/6-311++G**水平上计算碳酸钙和碳酸镁分解反应的势能面信息,分析了碳酸钙和碳酸镁分解过程的微观反应机理。对碳酸钙和碳酸镁,分别计算得到四条热分解反应路径。在分解温度范围内,采用传统过渡态理论(TST)对各反应路径的决速步骤的速率常数进行计算,通过与实验值比较,确定出碳酸钙和碳酸镁分解反应的最优反应路径,分别为:R(CaCO₃)→ IM〓(OCO·CaO)→P(CaO+CO₂);R(MgCO₃)→IM₀(OCO·MgO)→P(MgO+CO₂)。 (3)以碳酸钙和碳酸镁分解反应势能面上的所有计算得到的中间体构型为基础,采用Polymorph Predictor模块中的模拟退火法预测了各中间体的晶体结构。预测结果可知,方解石分解过程中晶型转变趋势为:三方晶系方解石(R〓c)经手性斜方晶系Pbca构型到达最终产物;菱镁矿分解过程中晶型转变趋势为:三方晶系菱镁矿(R〓c)经正交晶系结构Pna2₁构型到达最终产物。 (4)采用第一性原理研究方解石和菱镁矿分解过程中产物成核的团簇演变机制。利用密度泛函理论计算获得(CaO)〓(n=1-13)和(MgO)〓(n=1-13)结构、自由能以及△G函数。通过对团簇热力学稳定性规律的分析结果,推测出CaO和MgO成核前团簇生长机制,并基于二步成核机理,提出了分解过程中产物CaO和MgO晶体成核的微观演变途径:单分子MO→MO团簇→MO亚稳晶→MO纳米晶体(M=Ca、 Mg)。 关键词:方解石;菱镁矿;热分解机理;量子化学;晶型转变
    英文摘要 The decomposition of calcite (CaCO₃) and magnesite (MgCO₃) is one of the most extensive solid reaction research content, which is of great significance to understand all solid thermal stability. Although the chemical reaction equations of the decomposition of calcite and magnesite are only one step, in terms of its nature of solid thermal decomposition reaction, the reaction process is very complex. Only from experimental research, it is difficult to obtain reaction mechanism of chemical bond rupture, crystal transformation and solid product nucleation and so on. So on the basis of macroscopic experimental research, this paper studies the thermal decomposition mechanism of calcite and magnaesite using quantum chemistry method, focusing on reaction pathways, crystal transformation and the product nucleation mechanism. The main research contents and results are as follows: (1) Using thermogravimetric (TG)-differential scanning calorimetry (DSC), under different heating rate (5 K/min-15 K/min),we test thermal decomposition process of 4 ㎎ calcite powder. Experimental results show that the dynamic information obtained from the TG and DSC experiment curves of calcite decomposition have obvious differences, which indicates that the process of reaction has crystal transformation. (2) Using quantum chemistry software packages Gaussian03,the potential energy surface information of the decomposition reactions of calcium carbonate and magnesium carbonate are calculated at the MP2(full)/6-311++G** level, and their microscopic reaction mechanisms are analyzed. Both the decomposition reaction of calcium carbonate and that of magnesium carbonate have four reaction paths. Within the scope of the decomposition temperature, the reaction rate constants of rate-determining step are calculated using conventional transition state theory (TST). Compared with the experimental values, the most feasible path for the decomposition reaction of calcium carbonate and magnesium carbonate are determined, they are listed as follows: R(CaCO₃)→IM〓(OCO·CaO)→P(CaO+CO₂), R(MgCO₃)→IM₀(OCO·MgO)→ P(MgO+CO₂). (3) On the basis of all intermediates of the decomposition reaction of calcium carbonate and magnesium carbonate, the crystal structures of the intermediates are predicted by simulated annealing method in the Polymorph Predictor module. The results show that calcite (R〓c) transforms to CaO crystal via Pbca polymorphs while magnesite (R〓c) transforms to MgO crystal via Pnα2₁ polymorphs during the thermal decomposition. (4) The nucleation mechanisms through clusters evolution of the thermal decomposition products of calcite and magnesite are predicted by First-principles. The structures, free energies and ΔG function of (CaO)〓 (n=1-13) and (MgO)〓 (n=1-13) are obtained by density functional theory calculations. The clusters growing mechanisms of CaO nucleation and MgO nucleation are inferred by the thermodynamics stability of clusters. Based on the two-step nucleation mechanism, the nucleation micro evolution process of CaO crystal and MgO crystal are presented as: single molecule MO→MO clusters→MO metastable crystal→MO nanocrystals (M = Ca, Mg). Key Words : Calcite,Magnesite, Thermal decomposition mechanism, Quantum chemistry, Crystal transformation, Nucleation mechanism
    鸥维数据云查询平台
      联系我们
    • 电话:400-139-8015
    • 微信:vbeiyou
    • 邮箱:ovo@qudong.com
    • 总部:北京市海淀区学院路30号科群大厦西楼5层
    Copyright © 西北大学西部大数据研究院旗下“鸥维数据” 京ICP备17065155号-6