• 《蝶类(鳞翅目,双孔次亚目)主要分类群的谱系发育和中国冰清绢蝶谱系地理研究》
  • 作者:王运良著
  • 单位:安徽师范大学
  • 论文名称 蝶类(鳞翅目,双孔次亚目)主要分类群的谱系发育和中国冰清绢蝶谱系地理研究
    作者 王运良著
    学科 生物化学与分子生物学. 分子系统学
    学位授予单位 安徽师范大学
    导师 郝家胜指导
    出版年份 2017
    中文摘要 一、蝶类主要类群谱系发育及谱系发育年代研究 蝶类(Butterflies)隶属于昆虫纲(Insecta)鳞翅目(Lepidoptera),包含5科(凤蝶科、蛱蝶科、粉蝶科、灰蝶科(含蚬蝶类)、弄蝶科),约30亚科437个属,共2万余种。它们不仅是重要的传粉昆虫类群之一,在生态系统维持等方面起着关键的作用,同时也是昆虫发育、进化生物学等研究领域的重要的模式生物之一。迄今,蝶类的系统分类学研究已有一百多年的历史,但直到现在,蝶类主要类群间的系统发生关系依然没有形成广泛共识。另外,由于分子和形态数据的局限性及蝶类化石记录的相对匮乏,有关蝶类主要类群(科级及科级以下)的起源及分歧时间也尚不明确。近一、二十年来,随着分子生物学技术的长足进步,线粒体基因序列、多基因联合序列乃至全基因组序列数据被广泛运用于蝶类的遗传进化和分子系统学研究中,并取得了一些有价值的研究成果。就蝶类线粒体全基因组序列数据而言,目前已有143条序列从GenBank中释放出来。其中,凤蝶科(仅含绢蝶属2种)30条、粉蝶科8条、蛱蝶科80条、灰蝶科10条、弄蝶科15条。因而,利用线粒体全基因组序列数据重新研究蝶类主要类群间的系统进化关系已成为可能。 基于此,本文测定了凤蝶科绢蝶属6个代表种(冰清绢蝶、依帕绢蝶、君主绢蝶、珍珠绢蝶、安度绢蝶和夏梦绢蝶)的线粒体基因组全序列,结合本实验室已测出但尚未释放的绢蝶属种类的5条序列以及NCBI上已经释放的其他143条蝶类线粒体全基因组序列,从线粒体蛋白编码基因、tRNA和rRNA基因以及基因间隔区和控制区方面对蝶类主要代表类群共154个物种的线粒体基因组进行了比较和分析。同时,以部分鳞翅目等昆虫纲代表性物种作为外类群,运用最大似然法和贝叶斯方法等对蝶类的系统发生关系进行重建;运用宽松分子钟手段,以7种蝶类化石、6种其他确定的昆虫化石以及2种蝶类寄主植物的化石记录作为校正点,并经过交叉检验选择,对蝶类主要类群的分歧时间进行了推测。以期进一步探讨蝶类各科间以及各科内主要类群间(尤其是凤蝶科、绢蝶属)的系统发生关系和系统演化的时间尺度。主要结论如下: 1.在已知的18条绢蝶线粒体全基因组序列中,基因序列长度平均为15,386bp,最短的为安度绢蝶(15,328bp),最长的为依帕绢蝶(15,458bp),均含有37个基因和一段控制区(AT富集区),基因排列顺序和方向均与目前已知的其它蝶类一致,无基因重排、插入或缺失现象。 2.目前已知的154条蝶类线粒体全基因组基因排列顺序相对固定,基因重排均发生在tRNA基因。梳翅弄蝶tRNA〓和tRNA〓存在串联重复,而小赭弄蝶、苎麻珍蝶、朝灰蝶、红珠绢蝶、依帕绢蝶等在控制区中存在一个或二个类似tRNA结构(tRNA-like)。其线粒体蛋白编码基因排列顺序非常保守,大小基本一致,平均编码了3,718个氨基酸。蝶类线粒体蛋白编码基因(PCGs)的密码子和氨基酸使用存在极强的偏向性,其中NNA和NNU密码子使用频率最高,编码亮氨酸(UUA、UUG)的密码子最多,接下来依次为异亮氨酸、苯丙氨酸、甲硫氨酸、天冬酰胺等。绢蝶属线粒体基因组所编码的亮氨酸Leu2(UUA、UUG)、丙氨酸、甘氨酸、甲硫氨酸和脯氨酸均高于其它蝶类,但亮氨酸Leu1(CUN)则明显少于其它蝶类,这种氨基酸编码数目的改变有可能与绢蝶属适应高寒、缺氧的极端环境有关。 蝶类线粒体有两个亚基(16S rRNA和12S rRNA),其中,16S rRNA高变区的二级结构或许含有一定的进化遗传信息。从其二级结构来看,凤蝶科和粉蝶科亲缘关系较近,广义灰蝶科内(灰蝶和蚬蝶)亲缘关系较为亲密,弄蝶可能与其它蝶类有着较远的亲缘关系,而蛱蝶科内部的亲缘关系依然不能确定。蝶类线粒体全基因组中,在tRNA〓-ND2、tRNA〓(UCG)-ND1存在两处基因间隔区,在tRNA〓-tRNA〓、ATP8-ATP6处存在二个基因重叠区。蝶类A+T富集区一般具有ATAGA(T)引导Poly T结构、AT〓A引导的微卫星原件(AT)n或(TA)n片段(n>8)、Poly A结构、普遍存在的重复片段和tRNA-like结构,这些结构组分或许与基因的转录和复制有关。 3.分子系统发生树结果表明:①蝶类为单系群,其科级分类阶元的系统学关系为(凤蝶科+(弄蝶科+(粉蝶科+(蛱蝶科+灰蝶科))))。②凤蝶科明显分为绢蝶亚科和凤蝶亚科。绢蝶亚科的系统发生关系为(绢蝶属+(丝带凤蝶属+虎凤蝶属)),其中,绢蝶属18种蝶类可以分为5个亚属,其系统发生关系为((((Kreizbergia+Driopa)+Tadumia)+Kailasius)+Parnassius)。凤蝶亚科的系统发生关系为(((喙凤蝶族+凤蝶族)+裳凤蝶族)+燕凤蝶族)。③弄蝶科明显分为4个演化支,其系统发生关系为:(((弄蝶亚科+链弄蝶亚科)+花弄蝶亚科)+珠弄蝶亚科)+竖翅弄蝶亚科。其中,珠弄蝶属应该提升到亚科级分类阶元,即珠弄蝶亚科(Erynninae)。④粉蝶科三个亚科之间的系统学关系为((粉蝶亚科+黄粉蝶亚科)+袖粉蝶亚科),粉蝶亚科的系统发生关系为(((((斑粉蝶属+绢粉蝶属)+锯粉蝶属)+粉蝶属)+襟粉蝶属)+鹤顶粉蝶属)。其中,鹤顶粉蝶属的系统学位置还有待进一步探讨;妹粉蝶属不应该从绢粉蝶属中分离出去独立成属,而应该重新归于绢粉蝶属内作为其中的一个种。⑤广义灰蝶类(包括灰蝶和蚬蝶)系统树显示的系统发生关系为((((((黄灰蝶+玳灰蝶)+枯灰蝶)+(祖灰蝶+朝灰蝶))+红灰蝶)+塔银线灰蝶)+银灰蝶)+白带褐蚬蝶。其中,蚬蝶处于广义灰蝶类系统树的基部,和其他灰蝶类互为姊妹类群,它作为科级分类阶元理由尚不充分,建议将广义灰蝶类作为科级分类阶元,蚬蝶类作为其中的一个亚科;枯灰蝶作为眼灰蝶亚科的代表种,在系统树中以较高的置信值聚在线灰蝶亚科内部,因此,眼灰蝶亚科应该降为眼灰蝶族,隶属于线灰蝶亚科;⑥蛱蝶科类群明显分为6个演化支,其系统学关系为(((((线蛱蝶演化支+釉蛱蝶演化支)+蛱蝶演化支)+(眼蝶演化支+斑蝶演化支))+喙蝶演化支),其中,喙蝶演化支的系统学位置在不同的建树方法和不同的数据集构建的系统树间稍有区别,综合来看,喙蝶类应作为蛱蝶科的一个亚科更为合适,但喙蝶是否是蛱蝶科最原始的类群尚无法确定;珍蝶和环蝶应该作为一个族级分类阶元更为合适,其中,珍蝶族隶属于釉蛱蝶亚科,而环蝶族隶属于眼蝶亚科;蛱蝶演化支内部的系统学关系较为复杂,本研究结果为((((闪蝶亚科+苾蛱蝶亚科)+蛱蝶亚科)+丝蛱蝶亚科)+秀蛱蝶类),且各分支具有较高的置信值。 4.基于已知的154种蝶类线粒体全序列数据重建蝶类系统发生树,并依据目前确认的7种蝶类化石、2种蝶类寄主植物化石和6种其它昆虫类群化石作为化石记录校正点,并对校正点进行交叉验证和筛选,初步推测了蝶类主要类群的起源和分歧时间;同时,结合侏罗纪和白垩纪时期地球的气候事件、地质事件等环境事件以及蝶类寄主植物的演化历史等资料,初步探讨了蝶类主要类群分化的地质环境背景。结果表明:蝶类的起源时间为距今约132.5百万年前(Ma)(95%置信区间为:148.9-115.5Ma;下同)的下白垩世时期,这一时期的地球板块运动以及其后的气候、生态环境变化事件以及被子植物的兴起,导致蝶类的共同祖先由其鳞翅目祖先分化出来,并逐渐开始后续的扩散过程;蝶类各科级分类阶元分歧时间发生于中晚白垩世时期,分别为:凤蝶科85.7Ma(101.9-69.4Ma)、弄蝶科89.2Ma(112.6-65.8Ma)、粉蝶科83.9 Ma(100.9-67.7Ma)、灰蝶科83.9 Ma (106.4-61.4Ma)和蛱蝶科94.0 Ma(118.7-69.0Ma),这可能与当时的海陆急剧变迁(海平面上升、陆块显著隔离)及被子植物逐渐繁盛有关;各亚科内部特别是族级、属级分类阶元分化时间约在K-Pg界限生物集群灭绝事件以后,约65-45Ma,这可能是集群灭绝事件之后为新生物种腾出了广阔的生态空间,从而加速了蝶类的快速适应辐射过程。 二、冰清绢蝶13个居群的遗传分化谱系生物地理学研究 在蝶类家族中,有一类主要生活于高山地带的绢蝶属(Parnassius)蝶类尤为引人注目,它们隶属于凤蝶科(Papilioninae)、绢蝶亚科(Parnassiinae)。绢蝶属蝶类大都生活在高纬度高海拔的高山地带,具有耐高寒、耐缺氧等极端环境的一系列适应性特征。它们的起源和演化研究是昆虫进化生物学研究领域令人感兴趣的课题。其中,冰清绢蝶是绢蝶属中唯一生活在较低海拔、分布于我国西北、华中和华东等温带地区并扩散至江南地带的物种。该种蝶类和绢蝶属其他物种之间的系统学关系以及它自身起源和分化的时空格局还是未解之谜。基于此,本文尝试对冰清绢蝶在我国不同地理区域分布的13个居群共325个体以及其它绢蝶物种共11个体的线粒体基因组控制区序列进行PCR扩增和序列测定,依据所获得的序列数据对冰清绢蝶的遗传分化和多样性进行分析,同时,结合其系统发生分析结果和地理分布特点对冰清绢蝶系统演化的历史生物地理进行了初步探讨。主要结果如下: 1.冰清绢蝶控制区序列长度为487-495bp之间,平均为491bp,长度较为保守,其长度的差异主要体现在PolyT或PolyA的数目差异。4种碱基的平均含量分别为T:47.7%、C:2.8%、A:48.1%、G:1.4%,A+T平均含量为95.9%。 2.冰清绢蝶遗传多样性较为丰富。在13个地理居群的325例个体中,共检测出239个单倍型,单倍型多样性频率为0.9971;核酸多态性指数Pi值为0.02948,每位点Theta(per site)Eta值为0.06594;在各居群之间,Fst值大多在0.15-0.25之间,Nm值多在1.0-2.0之间;在各居群内部,其Fst值几乎均大于0.5;冰清绢蝶群体内平均遗传距离为0.031,居群间平均遗传距离为0.033,居群之间已经存在一定的分化。 3.系统发生树显示,冰清绢蝶和白绢蝶为近缘姊妹物种,二者和珍珠绢蝶享有最近的共同祖先。冰清绢蝶明显分为两大支系,第一大支包含小陇山(甘肃天水)、秦岭(陕西黄柏源)、牛头山(湖北十堰)、神农架(湖北神农架林区)等地的居群,另一大支主要包括嵩山(河南登封)、大别山(安徽天堂寨)、天目山(浙江临安)、琅琊山(安徽滁州)、紫金山(江苏南京)、云台山(江苏连云港)、老君山(河南洛阳)、泰山(山东泰安)和昆嵛山(山东烟台)等地的居群,在该大支系中,大别山、琅琊山、紫金山和天目山居群大体聚在一起,而老君山、嵩山、泰山、昆嵛山和云台山居群大体聚在一起,且两个支系内部存在少量的混杂现象。 4.前人的研究推测,绢蝶属可能起源于我国当今横断山脉的西南地区。冰清绢蝶的祖先从横断山脉-喜马拉雅附近,经唐古拉山、巴颜喀拉山扩散到达秦岭、小陇山一带。秦岭、小陇山、牛头山和神农架居群为本研究的13个地理居群的发源地,后来随着第四纪冰期-间冰期的转换,冰清绢蝶可能继续沿着秦岭山系向东向南迁移扩散。向东通过老君山扩散到嵩山、泰山、昆嵛山和老君山一带;向南扩散到大别山系的天堂寨后再向琅琊山、紫金山和天目山迁移扩散。 关键词:蝶类;绢蝶属;线粒体基因组;谱系发育;谱系发育年代;冰清绢蝶;D-loop区;谱系生物地理
    英文摘要 Part I The mitogenomic phylogeny and phylochronology of the main butterfly lineages. Butterflies are some of the most fascinating and beautiful insect groups in the Lepidoptera, which is one of the most widespread and widely recognizable insect orders in the world. As far as we know, they contain five families (Papilionidae, Nymphalidae, Pieridae, Lycaenidae (riodinids, formly Riodinidae), Hesperiidae), covering about 30 subfamilies, 430 genera, 20000 species all around the world. They are not only served as the important pollinating insect groups which play a critical role in the maintenance of natural ecosystem, but also frequently used as one of the model insect organisms in the developmental and evolutionary studies. Up to the present, the researchers have not reached a wide range of consensus about the systematics, especially about the higher-level phylogeny of butterflies, though the relative studies have undergone arelatively long periods of more than one hundred years. Additionally, owing to the deficiency of their morphological and molecular evidences and the relative scarcity of fossil records, the long-debated issues about their origin and divergence are still not fully addressed. In the past ten or twenty years, as the rapidly progressed theories and techniques of molecular phylogenetics, more and more molecular data which include the complete mitochondrial genome sequence or multiple gene concatenated sequence have been extensively ultilized to clarify the evolutionary genetics and molecular phylogeny of butterflies and consequently obtained a lot of important related achievements. Up to date, 143 complete or nearly complete mitochondrial geneome sequences of butterfly species have been deposited onto the GenBank in total. Among them, 30 are for the family Papilionidae (only two for its genus Parnassius), 8 for the Peridae, 80 for the Nymphalidae, 10 for the Lycaenidae and 15 for the Hesperiidae. Thus, it is readily possible for us to reconstruct the phylogenetic relationships and estimate the evolutionary timescales of the main butterfly lineages upon these abundant sequence data. In this paper, the complete mitogenome sequences of 6 representative Parnassius species (P. glacialis, P. epaphus, P. imperator, P. Orleans, P. andreji, P. jacquemonti) were determined and compared with 5 known Parnassius species formerly determined by our laboratory, combined with other 143 butterfly species available directly from GenBank, focusing on the protein coding gene (PCG), tRNA gene, rRNA gene, noncoding short sequence and D-loop region (AT-rich region) separately; meanwhile, the phylogenetic trees of the main butterfly lineages were reconstructed based on the mitogenomic sequence data using some lepidopterans and other homometablous insect species as outgroups; additionally, the evolutionary timescales of the main butterfly lineages were estimated with relaxed molecular clock method using 7 butterflies, 6 other insects and 2 hostplant species of butterfly as the calibration points with selectionvia cross validation. Upon these criteria, the phylogeny and phylochronology of the butterfly lineages, especialy the Papilionidae including Parnassius, were inferred and evaluated with detail and the main results are shown as below: 1.The mean length of mitogeomes of the 18 known Parnassius species is 15386 bp in size. Among these species, the Parnassius andrei is the shortest which is 15328 bp in size, the longest is Parnassius epaphus which is 15458 bp in size. All of the mitogenomes contain 37 genes and an non-coding AT-rich region,and their gene arrangement and orientation are identical to other butterfly species, with no gene rearrangements, insertions or deletions. 2.The gene arrangement of the known 154 butterfly mitogenomes is relatively conserved execept some minor tRNA alterations. Some tandem repeats of tRNA〓 and tRNA〓 were detected in Ctenoptilum vasava, one or two tRNA-like structures were detected in Ochlodes venata, Acraea issoria, Coreana raphaelis, Parnassius bremeri and Parnassius epaphus. The protein coding genes (PCGs) of butterfly mitogenomes are fixedly arranged and nearly the same in size, each averagely encoding 3718 amino acid residues. All the PCGs usually show significantly obvious bias in the usages of codons and amino acids, and among which the NNA and NNU codons are the most frequently used, the Leu-coding UUA and UUG are the most used, while the others such as Ile, Phe, Met, and Asp in turn decrease in number. However, compared with other butterfly groups, Parnassius mitogenomic PCGs shows significantly positive bias of Leu2 (UUA, UUG), Ala, Gly, Met and Pro, whereas negative bias of Leul(CUN). This phenomenon of amino acid usage change in Parnassius may be correlated with their adaptation to the cold, anoxic environments and molecular mechanisms. Like other insects, the mitogenomes of all the butterfly groups harbor two ribosomal subunit genes, namely 16S rRNA and 12S rRNA. Theirsecondarily hypervariable regions may contain some evolutionary information, for example, with respect to 16S rRNA secondary structure, the Papilionidae is more closely related to Peridae, while Hesperiidae is far distant from other butterfly groups. The mitogenomes usually harbor two intergenic spacers located between tRNA〓 and ND2, tRNA〓(UCG) and ND1, and two overlapping sequences between tRNA〓 and tRNA〓, between ATP 8 and ATP6 genes respectively. TheAT-rich regions generally containa PolyT which initiated by ATAGA or ATAGT motifs, the microsatellite-like structure (AT)n or (TA)n, Poly A structures and tRNA-like structures which is initiated by ATAGA(T) motif. All these structures may serve as important factors in the gene duplication and transcription of mitochondria. 3.The results of our molecularphylogenetic trees showed that: (1) Butterflies are a monophyletic group with their internal relationship of (Papilionidae, (Hesperiidae, (Pieridae, (Nymphalidae, Lycaenidae)))). (2) Papilionidae stands as the most basal group in the phylogenetic trees which contains two subfamily Papilioninae and Parnassinae. The internal relationship of Parnassinae is (Parnassius, (Sericinus, Luehdorfia)), the 18 Parnassius species in this study contains 5 subgenera with their relations of ((((.Kreuzbergia, Driopa), Tadumia) Kailasius), Parnassius); the internal relationship of Papilioninae is (((Teinopalpini, Papilionini), Troidini), Lampropterini). (3) The phylogenetic relationship of the the Hesperiidae is((((Hesperiinae, Heteropterinae), Pyrginae), Erynninae), Coeliadinae). The Erynnis should be raised to the subfamiliartaxon, namly Erynninae. (4) The internal relationship of Pieridae is ((Pierini, Coliadinae), Dismorphiinae). The phylogenetic relationship of Pierini is (((((Delias, Aporia), Gonepteryx), Peris), Anthocharis), Hebomoia) with the phylogenetic postion of Hebomoia awaiting further investigations. The Mesapia should be reclassified into, rather than separated from the Aporia as a new genus. (5) The phylogenetic relationship of lycaenids including roinids in this study is (((((((Japonica lutea, Deudorix epijarbas), Cupido minimus), (Protantigius superans, Coreana raphaelis)), Lycaena phlaeas), Spindasis takanonis), Curetis bulis), Abisara fylloides). The rroinids is more closely related to lycaenids than other butterfly groups and should be reclassified into the family Lycaenidae as the subfamiliar taxon Roinidinae.As a representative species of subfamily Polyommatinae, Cupido minimus stands within the subfamily Theclinae in the phylogenetic trees and therefore, the Polyommatinae should be reranked to tribal taxa within Theclinae. (6) Nymphalidae are divided into 6 evolutionary branches, and their relationship is (((((Limenitine clade, Heliconiine clade), Nymphaline clade), (Satyrine clade, Dananine clade)), Libytheine clade). The phylogenetic positions of Libytheine clade are slightly different among the trees upon different data sets and tree reconstruction methods, and generally the Libytheine should be more suitable treated as a subfamily of the Nymphalidae. Both acraeids and amathusiids should be treated as tribal taxa, with the former being classified within subfamily Heliconiinae and the later within subfamily Satyrinae. As far as we know, the internal relationships of Nymphaline clade is complicated, however, our results in this study showed that the relationship is ((((Morphinae, Biblidinae), Nymphalinae), Cyrestinae), Pseudergolinae) with a relatively higher support on the each node of the phylogenetic trees. 4. In this study, upon the reconstructed phylogentic trees, the origin and divergence times of the main butterfly lineages were estimated with relaxed molecular method by using calibrations of 7 butterfly fossils, two hostplant fossils and six fossils of other representative insect groups via cross-validation of these selected fossils. Meanwhile, the corresponding earth environmental background were also investigated correlated with the climate change, geological events and other evolutionary scenarios occurred in the Jurassic and Cretaceous periods. The results showed that the origin of butterflies was dated to about 132.5 million years ago (Ma) in the Lower Cretaceous Period (95% credit interval: 148.9~115.5 Ma), in which time the initial earth plate movements (Gandwana), the subsequent climate change and other environmental events as well as the early rise of angiosperms may led to the diversification of butterflies from its lepidopteran ancestor and their later dispersals; the origins of familiar taxa of butterflies was dated to about 85.7 Ma for Papilionidae (95% CI: 101.9~69.4Ma), 83.9Ma for Peridae (95% CI: 100.9~67.7 Ma), 94.0 Ma for Nymphalidae (95% CI: 118.7~69.0 Ma), 83.9 Ma for Lycaenidae (95% CI: 106.4~61.4Ma), 89.2Ma for Hesperiidae (95% CI; 112.6~65.8 Ma) respectively in the Upper Cretaceous; these family-level diversification may correlates with the radical sea level uplift, earth plate isolation, as well as the gradual blooming of angiosperms; the diveregence times of subfamiliar and tribal taxa were dated to about 45 to 65 Ma shortly after the K-Pg extinction event, all these rapid evolutionary radiation events may correlate with the abundant evolutionary ecological niches left by the mass extinction. Part II The genetic differentiation and phylogeography of Parnassius glacialis Among all the butterfly groups, the Genus Parnassius (Papilionidae, Parnassiinae) is one of the most charming groups which is mostly distributed in the alpine moutaineous areas of the Euroasia and North America. Owing to their high-latitudinal distribution, they have evolved numerous morphological and physiological traits adaptive to the cold and oxygen-lacking environments. However, up to date, little is known about their origin and diversification pattern which is one of the most charming issues inevolutionary studies of insects, and thus more further researches are needed to clarify these problems. Among these Parnassius species,the P. glacialis is the only onerelatively low-latitudinal living species which is distributed in the Northwest, Central and East areas of China. Its phylogenetic relationship with other Parnassius species and its spatiotemporal diversification pattern in its evolutionary history is a new subject which need to be deeply implored in depth. In this paper, the mitochondrial AT-rich region (D-loop region) sequences of the 325 individuals representing 13 P. glacialis geographic populations and other 11 individuals of other Parnassius species were amplified and sequenced, and upon these sequence data, the genetic differentiation between and within the P. glacialis populations as well as the phylogeographic pattern of this species were investigated. The main results were shown as below: 1.The AT-rich regions range from 487 to 495 bp in size, showing relatively conserved structures with minor number differences of the PolyT or PolyA. The mean base compositions of T, A, C, G are 47.7%, 48.1%, 2.8% and 1.4% resepectively with a mean AT content up to 95.5 percent. 2.The relatively rich genetic diversity of P. glacialis is detected in this study. In total, 239 halotypes was found in the 325 individuals of the 13 populations with its frequency of diversity represented by 0.9971. There exists also remarkable genetic differentiations among the different P. glacialis populations: the Fst values are mostly ranged from 0.15 to 0.25, the Nm values are about 1.0 to 2.0 among the populations, while almost more than 0.5 within the populations; the mean value of genetic divergence distance of P. glacialis is 0.03. All the results suggests that some extent of genetic differentiations have been occurred between the populations. 3.The phylogenetic trees showed that Parnassius glacialis is most closely related to Parnassius stubbendorfii, and this two sister species share a commom ancestor with the Parnassius Orleans. P. glacialis contains two major lineages: one is the clustering of Qinling (Shanxi, Huangbaiyuan), Xiaolongshan (Gansu, Tianshui), Niutoushan (Hubei, Shiyan), Shennongjia (Hubei, Shennongjia) populations; the other is the grouping of Songshan (Henan, Dengfeng), Dabieshan (Anhui, Tiantangzhai), Tianmushan (Zhejiang, Lin’an), Langyashan (Anhui, Chuzhou), Zijingshan (Jiangsu, Nanjing), Yuntaishan (Jiangsu, Lianyuangang), Laojunshan (Henan, Luoyang), Taishan (Shandong, Taian), Kunyushan (Shandong Yantai) populations, and in this branch (lineage), two subbranches, namely the relatively northern distributed and southern distributed population groupings, emerge distinctively with some degree of mutual migration between populations . 4.Previous studies suggested that the genus Parnassius was originated at the Hengduan Mountains of the southwestern China. P. glacialis probably start to disperse from the Hengduan Mountains across over the Tanggulashan Mountains, Bayan Har Mountains to reach the Qinling Mountains, such as Xiaolongshan, Huang Baiyuan areas. Later, with the continuous changes between the glacial and interglacial cycles during the Quaternary, P. glacialis continue to migrate from the Qinling Mountains to the southern or eastern areas of China. The eastern dispersal is from Laojunshan to Songshan, Taishan, Kunyushan and Yuntaishan areas; the southern dispersal is from the Tiantangzhai (Dabie Mountains) to Langyashan, Zijingshan and Tianmushan Moutains. Keywords: Butterfly; Parnassius; Mitochondrial genome; Phylogenetic relationship; Phylochronology; Parnassius glacialis; D-loop region; Phylogeography
    鸥维数据云查询平台
      联系我们
    • 电话:400-139-8015
    • 微信:vbeiyou
    • 邮箱:ovo@qudong.com
    • 总部:北京市海淀区学院路30号科群大厦西楼5层
    Copyright © 西北大学西部大数据研究院旗下“鸥维数据” 京ICP备17065155号-6