• 《基于密度泛函理论的铁基反尖晶石载氧体还原性质计算及实验研究》
  • 作者:刘帅著
  • 单位:安徽大学
  • 论文名称 基于密度泛函理论的铁基反尖晶石载氧体还原性质计算及实验研究
    作者 刘帅著
    学科 物理化学
    学位授予单位 安徽大学
    导师 曹晏指导
    出版年份 2019
    中文摘要 本论文立足于高效、低碳的固体燃料化学链循环过程,选题涉及其中的核心关键载氧体科学问题,聚焦来源广泛、价格低廉、环境友好、工业应用可行的铁基载氧体,最终确定了多金属元素协同作用、且结构更稳定、多阳离子空位结构的复合铁基反尖晶石载氧体为研究对象。研究采用理论与计算化学为主、常规性能评价和材料表征实验为辅、结合已发表实验数据为验证的策略,考察和讨论了复合铁基反尖晶石载氧体的电子结构性质、反应活性和反应机理。基于密度泛函理论的计算研究阐释了载氧体宏观还原性能的微观本质,涉及六种复合铁基反尖晶石结构,包括CoFe₂O、CoFe₂O₄、MnFe₂O₄、NiFe₂O₄晶体以及掺杂了Ca、Ba元素的Fe₂O₄晶体;以实质的气(H₂/CO)-固(载氧体)模拟固体燃料化学链循环表观的固-固反应,以化学吸附和热重实验仪器重点研究了CuFe₂O₄和CoFe₂O₄,并借助XPS进一步实验表征其电子形态和结合能。具体结果如下: CuFe₂O₄和CoFe₂O₄载氧体在H₂或CO还原性气氛下表现出不同的还原行为特点,CuFe₂O₄与气体的起始反应温度比CoFe₂O₄低,CoFe₂O₄的最大反应速率比CuFe₂O₄高。XPS表征结果揭示载氧体氧形态的多样化是造成上述宏观还原性质的根本原因,表面氧反应活性影响着反应发生的难易程度,体相晶格氧含量远高于表面氧含量且是载氧体还原反应速率能力的决定因素。表面氧反应活性和体相晶格氧迁移效率共同决定了还原反应发生的起始及演变。理论计算得到电子态密度图显示,CoFe₂O₄晶体体相晶胞的禁带宽度比CuFe₂O₄窄,意味着其价带电子越容易跨越禁带跃迁到导带成为自由电子,说明CoFe₂O₄晶体内原有金属一氧键更容易发生断裂,从而有利于解离后的体相晶格氧向表面迁移、及与更外层的金属原子形成新的金属一氧键,因此CoFe₂O₄晶体体相晶格氧的迁移速率比CuFe₂O₄高,对应更快的宏观还原反应速率;CuFe₂O₄晶体表面的禁带宽度比CoFe₂O₄窄,CuFe₂O₄表面金属吸附位点和表面晶格氧的活性比CoFe₂O₄更高,从而在实验测试中CuFe₂O₄比CoFe₂O₄在更低的温度下开始反应。 理论计算结果显示表面弛豫后位于最外层的Cu或Co原子与次外层的Fe〓原子比在体相结构中相距更远,从空间位置角度证明了CuFe₂O₄表面比CoFe₂O₄具有更加有利的条件供外来气体吸附其上。巴德电荷分析结果进一步揭示弛豫后表面金属原子比在体相结构中的电负性有所增加,有利于显正电性的燃料气体分子基团吸附,且表面Cu原子比表面Co原子的电负性更强,从电负性角度证明了CuFe₂O₄表面金属原子比CoFe₂O₄的吸附活性更高,因此其表面反应活性更强。 统一研究MFe₂O₄(M=Cu,Co,Mn,Ni)铁基反尖晶石结构发现,以八面体位点的M〓吐原子和四面体位点的Fe〓原子作终端的两种表面,由于表面弛豫过程中原子配位数减小得最少,计算得到的表面能最低,因而最有可能代表实际表面。M〓原子作终端的表面拥有更多的金属原子吸附位点从而有利于气体分子的吸附过程,Fe〓原子作终端的表面其氧原子层与燃料气体分子在空间上距离更近,与之发生反应的空间可能性更高。弛豫后的表面金属原子呈现相互远离的趋势,以增强整个体系在空间上的对称性,其比体相金属原子对燃料气体分子的吸附活性更高。 马利肯布居数分析揭示了Ba铁尖晶石作为载氧体优于Fe₂O₄尖晶石、Ca铁尖晶石的微观电子性质本质。Ba掺杂的Fe₂O₄晶体中的O原子的电子数最多,可能最有利于体相晶格氧的迁移,晶体中位于四面体位点的Fe〓原子与氧原子的作用较其它两个体系最弱,可能意味着其表面反应活性最高。 本论文采用理论计算化学手段和实验手段共同构建了复合铁基反尖晶石载氧体在还原性气氛下(H₂/CO)的反应活性与其微观电子结构间的内在联系规律,并拓展了理论分析、解释、预测复合铁基反尖晶石载氧体宏观还原反应活性能力,具有显著的科学意义及明显的创新性。 关键词:化学链;铁基载氧体;密度泛函理论;还原反应活性;电子性质
    英文摘要 Chemical looping process (CL) is a novel energy conversion scheme, in which the in-situ carbon capture and the high energy conversion efficiency could be realized without energy penalty. Oxygen carriers (OC), which are generally metal oxides or their composites, are critical in the development of different CL processes, addressing combustion, gasification and H₂ production. Iron-based oxide, rich in natural resource and inexpensive, is one of ideal candidates as oxygen carriers in the CL process. Understandings towards the general principles of the selection on iron-based oxygen carriers, especially multi-metal ferrites, are highly demanded. The thesis focused on multi-metal ferrite oxygen carriers, one of the most promising iron oxide groups. The research was carried out via a combination of experimental and quantum computational methods. The sol-gel combustion method was used to synthesize ferrite compounds and Thermogravimetry (TG) as well as Temperature-Programmed Reduction (TPR) were applied to test the reducibility of the prepared samples in the atomasphere of CO and H₂, respectively. Two descriptors of the initial reaction temperature and the reaction rate were used in the study to describe the reduction behaviour of the OC samples, and respectively mainly determined by the surface reactivity and the outward diffusion efficiency of lattice oxygen in the bulk. X-ray Photoelectron Spectroscopy (XPS) characterization was conducted to experimentally explore the electronic property. Binding energy was a unique parameter to analyse the specific chemical environment in the fettite samples where the element of O was located. The study turned out that a higher binding energy and content of surface oxygen resulted in a lower initial reaction temperature, while a higher binding energy and content of lattice oxygen in the bulk brought a faster reaction rate. The softwares of Castep and VASP (Vienna Ab-initio Simulation Package) based on Density Functional Theory (DFT) were utilized to investigate geometries and electronic structures of ferrite systems. The band gap near the fermi level was considered to indicated the reactivity of O atoms. Corresponding to the experimental results, a smaller band gap in the bulk configuration meant a higher reaction rate while a smaller band gap in the surface (111) configuration led to a lower initial reaction temperature. Moreover, a further distance between the first layer and the second one in the surface (111) configuration could provide more space for the outermost metal atoms to be adsorbed in by reducing gas molecules such as CO and H₂. Overall, using deeper prediction insights into structure-property relations, as summazed in this thesis, will greatly increase the success of our subsequent efforts. The study helped in one step forward to potentially apply the quantum computational method into the development of oxygen carriers in terms of designing, selecting and testing. Keywords: chemical looping ; ferrite oxygen carriers; Density Functional Theory; reduction reactivity; electronic properties
    鸥维数据云查询平台
      联系我们
    • 电话:400-139-8015
    • 微信:vbeiyou
    • 邮箱:ovo@qudong.com
    • 总部:北京市海淀区学院路30号科群大厦西楼5层
    Copyright © 西北大学西部大数据研究院旗下“鸥维数据” 京ICP备17065155号-6